07. Importance Weight
Importance Weight
Importance Weight
Task Description:
So far, you’ve generated the particles and simulated motion. Now, you should assign an importance weight to each one of the generated particles. Scroll down to the main function. follow the instructions and generate a weight vector which holds the weight values of the 1000 particles.
Task Feedback:
Great work! Now run your code and verify it is functioning as expected.
Start Quiz:
//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers
//namespace plt = matplotlibcpp;
using namespace std;
// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
{ 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
{ 80.0, 20.0 }, { 80.0, 50.0 } };
// Map size in meters
double world_size = 100.0;
// Random Generators
random_device rd;
mt19937 gen(rd());
// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();
class Robot {
public:
Robot()
{
// Constructor
x = gen_real_random() * world_size; // robot's x coordinate
y = gen_real_random() * world_size; // robot's y coordinate
orient = gen_real_random() * 2.0 * M_PI; // robot's orientation
forward_noise = 0.0; //noise of the forward movement
turn_noise = 0.0; //noise of the turn
sense_noise = 0.0; //noise of the sensing
}
void set(double new_x, double new_y, double new_orient)
{
// Set robot new position and orientation
if (new_x < 0 || new_x >= world_size)
throw std::invalid_argument("X coordinate out of bound");
if (new_y < 0 || new_y >= world_size)
throw std::invalid_argument("Y coordinate out of bound");
if (new_orient < 0 || new_orient >= 2 * M_PI)
throw std::invalid_argument("Orientation must be in [0..2pi]");
x = new_x;
y = new_y;
orient = new_orient;
}
void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
{
// Simulate noise, often useful in particle filters
forward_noise = new_forward_noise;
turn_noise = new_turn_noise;
sense_noise = new_sense_noise;
}
vector<double> sense()
{
// Measure the distances from the robot toward the landmarks
vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
dist += gen_gauss_random(0.0, sense_noise);
z[i] = dist;
}
return z;
}
Robot move(double turn, double forward)
{
if (forward < 0)
throw std::invalid_argument("Robot cannot move backward");
// turn, and add randomness to the turning command
orient = orient + turn + gen_gauss_random(0.0, turn_noise);
orient = mod(orient, 2 * M_PI);
// move, and add randomness to the motion command
double dist = forward + gen_gauss_random(0.0, forward_noise);
x = x + (cos(orient) * dist);
y = y + (sin(orient) * dist);
// cyclic truncate
x = mod(x, world_size);
y = mod(y, world_size);
// set particle
Robot res;
res.set(x, y, orient);
res.set_noise(forward_noise, turn_noise, sense_noise);
return res;
}
string show_pose()
{
// Returns the robot current position and orientation in a string format
return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
}
string read_sensors()
{
// Returns all the distances from the robot toward the landmarks
vector<double> z = sense();
string readings = "[";
for (int i = 0; i < z.size(); i++) {
readings += to_string(z[i]) + " ";
}
readings[readings.size() - 1] = ']';
return readings;
}
double measurement_prob(vector<double> measurement)
{
// Calculates how likely a measurement should be
double prob = 1.0;
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
prob *= gaussian(dist, sense_noise, measurement[i]);
}
return prob;
}
double x, y, orient; //robot poses
double forward_noise, turn_noise, sense_noise; //robot noises
private:
double gen_gauss_random(double mean, double variance)
{
// Gaussian random
normal_distribution<double> gauss_dist(mean, variance);
return gauss_dist(gen);
}
double gaussian(double mu, double sigma, double x)
{
// Probability of x for 1-dim Gaussian with mean mu and var. sigma
return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
}
};
// Functions
double gen_real_random()
{
// Generate real random between 0 and 1
uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
return real_dist(gen);
}
double mod(double first_term, double second_term)
{
// Compute the modulus
return first_term - (second_term)*floor(first_term / (second_term));
}
double evaluation(Robot r, Robot p[], int n)
{
//Calculate the mean error of the system
double sum = 0.0;
for (int i = 0; i < n; i++) {
//the second part is because of world's cyclicity
double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
double err = sqrt(pow(dx, 2) + pow(dy, 2));
sum += err;
}
return sum / n;
}
double max(double arr[], int n)
{
// Identify the max element in an array
double max = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > max)
max = arr[i];
}
return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
//Draw the robot, landmarks, particles and resampled particles on a graph
//Graph Format
plt::title("MCL, step " + to_string(step));
plt::xlim(0, 100);
plt::ylim(0, 100);
//Draw particles in green
for (int i = 0; i < n; i++) {
plt::plot({ p[i].x }, { p[i].y }, "go");
}
//Draw resampled particles in yellow
for (int i = 0; i < n; i++) {
plt::plot({ pr[i].x }, { pr[i].y }, "yo");
}
//Draw landmarks in red
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
}
//Draw robot position in blue
plt::plot({ robot.x }, { robot.y }, "bo");
//Save the image and close the plot
plt::save("./Images/Step" + to_string(step) + ".png");
plt::clf();
}
*/
int main()
{
//Practice Interfacing with Robot Class
Robot myrobot;
myrobot.set_noise(5.0, 0.1, 5.0);
myrobot.set(30.0, 50.0, M_PI / 2.0);
myrobot.move(-M_PI / 2.0, 15.0);
//cout << myrobot.read_sensors() << endl;
myrobot.move(-M_PI / 2.0, 10.0);
//cout << myrobot.read_sensors() << endl;
// Create a set of particles
int n = 1000;
Robot p[n];
for (int i = 0; i < n; i++) {
p[i].set_noise(0.05, 0.05, 5.0);
//cout << p[i].show_pose() << endl;
}
//Re-initialize myrobot object and Initialize a measurment vector
myrobot = Robot();
vector<double> z;
//Move the robot and sense the environment afterwards
myrobot = myrobot.move(0.1, 5.0);
z = myrobot.sense();
// Simulate a robot motion for each of these particles
Robot p2[n];
for (int i = 0; i < n; i++) {
p2[i] = p[i].move(0.1, 5.0);
p[i] = p2[i];
}
//#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
//TODO: Generate particle weights depending on robot's measurement
//TODO: Print particle weights, each on a single line
double w[n];
return 0;
}
//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers
//namespace plt = matplotlibcpp;
using namespace std;
// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
{ 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
{ 80.0, 20.0 }, { 80.0, 50.0 } };
// Map size in meters
double world_size = 100.0;
// Random Generators
random_device rd;
mt19937 gen(rd());
// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();
class Robot {
public:
Robot()
{
// Constructor
x = gen_real_random() * world_size; // robot's x coordinate
y = gen_real_random() * world_size; // robot's y coordinate
orient = gen_real_random() * 2.0 * M_PI; // robot's orientation
forward_noise = 0.0; //noise of the forward movement
turn_noise = 0.0; //noise of the turn
sense_noise = 0.0; //noise of the sensing
}
void set(double new_x, double new_y, double new_orient)
{
// Set robot new position and orientation
if (new_x < 0 || new_x >= world_size)
throw std::invalid_argument("X coordinate out of bound");
if (new_y < 0 || new_y >= world_size)
throw std::invalid_argument("Y coordinate out of bound");
if (new_orient < 0 || new_orient >= 2 * M_PI)
throw std::invalid_argument("Orientation must be in [0..2pi]");
x = new_x;
y = new_y;
orient = new_orient;
}
void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
{
// Simulate noise, often useful in particle filters
forward_noise = new_forward_noise;
turn_noise = new_turn_noise;
sense_noise = new_sense_noise;
}
vector<double> sense()
{
// Measure the distances from the robot toward the landmarks
vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
dist += gen_gauss_random(0.0, sense_noise);
z[i] = dist;
}
return z;
}
Robot move(double turn, double forward)
{
if (forward < 0)
throw std::invalid_argument("Robot cannot move backward");
// turn, and add randomness to the turning command
orient = orient + turn + gen_gauss_random(0.0, turn_noise);
orient = mod(orient, 2 * M_PI);
// move, and add randomness to the motion command
double dist = forward + gen_gauss_random(0.0, forward_noise);
x = x + (cos(orient) * dist);
y = y + (sin(orient) * dist);
// cyclic truncate
x = mod(x, world_size);
y = mod(y, world_size);
// set particle
Robot res;
res.set(x, y, orient);
res.set_noise(forward_noise, turn_noise, sense_noise);
return res;
}
string show_pose()
{
// Returns the robot current position and orientation in a string format
return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
}
string read_sensors()
{
// Returns all the distances from the robot toward the landmarks
vector<double> z = sense();
string readings = "[";
for (int i = 0; i < z.size(); i++) {
readings += to_string(z[i]) + " ";
}
readings[readings.size() - 1] = ']';
return readings;
}
double measurement_prob(vector<double> measurement)
{
// Calculates how likely a measurement should be
double prob = 1.0;
double dist;
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
prob *= gaussian(dist, sense_noise, measurement[i]);
}
return prob;
}
double x, y, orient; //robot poses
double forward_noise, turn_noise, sense_noise; //robot noises
private:
double gen_gauss_random(double mean, double variance)
{
// Gaussian random
normal_distribution<double> gauss_dist(mean, variance);
return gauss_dist(gen);
}
double gaussian(double mu, double sigma, double x)
{
// Probability of x for 1-dim Gaussian with mean mu and var. sigma
return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
}
};
// Functions
double gen_real_random()
{
// Generate real random between 0 and 1
uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
return real_dist(gen);
}
double mod(double first_term, double second_term)
{
// Compute the modulus
return first_term - (second_term)*floor(first_term / (second_term));
}
double evaluation(Robot r, Robot p[], int n)
{
//Calculate the mean error of the system
double sum = 0.0;
for (int i = 0; i < n; i++) {
//the second part is because of world's cyclicity
double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
double err = sqrt(pow(dx, 2) + pow(dy, 2));
sum += err;
}
return sum / n;
}
double max(double arr[], int n)
{
// Identify the max element in an array
double max = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > max)
max = arr[i];
}
return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
//Draw the robot, landmarks, particles and resampled particles on a graph
//Graph Format
plt::title("MCL, step " + to_string(step));
plt::xlim(0, 100);
plt::ylim(0, 100);
//Draw particles in green
for (int i = 0; i < n; i++) {
plt::plot({ p[i].x }, { p[i].y }, "go");
}
//Draw resampled particles in yellow
for (int i = 0; i < n; i++) {
plt::plot({ pr[i].x }, { pr[i].y }, "yo");
}
//Draw landmarks in red
for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
}
//Draw robot position in blue
plt::plot({ robot.x }, { robot.y }, "bo");
//Save the image and close the plot
plt::save("./Images/Step" + to_string(step) + ".png");
plt::clf();
}
*/
int main()
{
//Practice Interfacing with Robot Class
Robot myrobot;
myrobot.set_noise(5.0, 0.1, 5.0);
myrobot.set(30.0, 50.0, M_PI / 2.0);
myrobot.move(-M_PI / 2.0, 15.0);
//cout << myrobot.read_sensors() << endl;
myrobot.move(-M_PI / 2.0, 10.0);
//cout << myrobot.read_sensors() << endl;
// Create a set of particles
int n = 1000;
Robot p[n];
for (int i = 0; i < n; i++) {
p[i].set_noise(0.05, 0.05, 5.0);
//cout << p[i].show_pose() << endl;
}
//Re-initialize myrobot object and Initialize a measurment vector
myrobot = Robot();
vector<double> z;
//Move the robot and sense the environment afterwards
myrobot = myrobot.move(0.1, 5.0);
z = myrobot.sense();
// Simulate a robot motion for each of these particles
Robot p2[n];
for (int i = 0; i < n; i++) {
p2[i] = p[i].move(0.1, 5.0);
p[i] = p2[i];
}
//#### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
//Generate particle weights depending on robot's measurement
//Print particle weights, each on a single line
double w[n];
for (int i = 0; i < n; i++) {
w[i] = p[i].measurement_prob(z);
cout << w[i] << endl;
}
return 0;
}